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Abstract. We derive formulae for calculating forces within density-functional methods whereby
we specifically take it into account that different parts of space may be treated differently.
Special emphasis is put on correcting for various approximations, such as incomplete basis sets
and approximative descriptions of electron densities and of Coulomb and exchange–correlation
potentials. In particular, we apply the formulae for the full-potential linear muffin-tin orbital
method for helical polymers. After discussing general results obtained for various finite and infinite
systems, we apply the method in optimizing all structural degrees of freedom for undimerized and
dimerizedtrans-polyacetylene as well as determining the energy gain upon dimerization.

1. Introduction

First-principles calculations of the electronic structure of materials provide information that
can be used to get a better understanding of the properties of the materials. For some properties
(e.g., band structures, densities of states, the total electron density or that of selected orbitals,
charge transfers, and chemical bonding) a calculation for a single ‘realistic’ structure will
give the required information. Others, however, require that the structure with the lowest
total energy is found. This is obviously the case for structural information but, e.g., also
for vibrational spectra, and it is needed when one wants to compare the stability of different
systems (e.g., isomers) to one another.

In calculating the electronic properties, the single-particle eigenfunctions are in most cases
expanded in some basis, and most methods differ in their choice. Gaussians and plane waves
are common choices, since a large proportion of the required expressions can be evaluated
analytically. There are, however, other methods that utilize the fact that electrons in different
parts of space behave differently; i.e., they are strongly bound by an approximately spherically
symmetric potential close to the nuclei, whereas they are more delocalized in the bonding region
where the potential is only slowly varying. Using this leads to methods that are conceptually
more transparent but which become more complicated to implement—mainly due to this
separation of space into more parts that are treated differently.

Most first-principles calculations are performed within the Born–Oppenheimer approx-
imation and by carrying a full self-consistent calculation on each structure through separately.
For systems with just a few atoms (per unit cell for extended periodic systems, or in total
for finite molecules) it is very difficult to optimize the structure when using only the total
energy. In general only through knowledge of the forces may this task be transformed into a
manageable one. It is the purpose of the present work to show how the forces can be calculated

§ Present address: Physics Department, Linköping University, S-581 83 Link̈oping, Sweden.

0953-8984/99/387243+15$30.00 © 1999 IOP Publishing Ltd 7243



7244 M Springborg and A Pohl

for general methods that treat different parts of space differently. Explicitly we shall discuss
a first-principles density-functional LMTO (linearized muffin-tin orbitals) method for helical
polymers but we stress that most of our results are not restricted to that particular method.

There exist many descriptions of procedures for calculating forces within parameter-free
methods for electronic structure calculations. However, to the present authors’ knowledge there
have been only very few other presentations of methods for calculating forces within LMTO or
related methods, which moreover differ in several important aspects from the present one and
in some cases invoke extra approximations. In other cases, when treating three-dimensional
periodic structures, parts of space are treated with plane waves which also leads to significant
simplifications.

The first of these methods is due to Harriset al [1], who, however, only calculated
the Hellmann–Feynman forces plus an extra term due to the frozen-core approximation.
Savrasov and Savrasov [2] recently presented formulae for forces within a full-potential LMTO
method, which, though, was explicitly constructed for closely packed solids. Methfessel and
van Schilfgaarde [3] suggested replacing the Kohn–Sham density-functional total energy by
the expression due to Harris [4]. Since the latter has extrema for the same densities and
geometries as the former, the forces obtained by using the form of Harris agree with those
obtained using the Kohn–Sham expression, at least in the neighbourhood of the total-energy
minimum. This method has the very important advantage of being computationally much
simpler than what we present, but it works only well when the Kohn–Sham equations are solved
accurately. Finally, Bl̈ochl [5] has discussed formulae for a full-potential LMTO method that
is constructed explicitly for crystalline materials for which, furthermore, the ASA (atomic
sphere approximation) is a good approximation.

Soler and Williams [6], Yuet al [7, 8], Goedecker and Maschke [9], and Kohleret al [10]
have all presented formulae for forces within the LAPW (linearized augmented-plane-wave)
method. Being based on plane waves as basis functions, it is restricted to three-dimensional
periodic structures and can thereby avoid some of the general problems that we shall discuss
here. The PAW (projector augmented-wave) method, developed by Blöchl [11], has also been
used in treating isolated, molecular systems by employing a supercell approximation.

In the present work we shall calculate forces that are consistent with the calculated total-
energy hypersurface as independently as possible of the accuracy with which the latter is
obtained, and the approach will therefore not be restricted to special (classes of ) systems. As
extensions of previous works we shall explicitly include the corrections to the forces due to
incomplete sets of basis functions that, furthermore, are represented differently in different
parts of space (a larger part of these corrections are absent within the augmented-plane-
wave methods) and due to different, more or less accurate, descriptions of the potential in
different parts of space (other studies have only considered the case where the potentials are
approximated in the complete space; see below in sections 3.5 and 3.6). Our approach is
accordingly the first one that treats the Kohn–Sham total-energy expression, that completely
takes into account the separation of space into more parts, that is not restricted to plane waves
and three-dimensional crystalline systems, and that corrects for essentially all approximations
made in the calculations. Our specific first-principles method has been described in detail
elsewhere [12, 13] and section 2 contains therefore only a brief account, sufficient for the
subsequent sections. The formulae for the forces are derived in section 3. The special case
of helical polymers is discussed in section 4. In section 5 we give some general results
obtained from a number of test calculations on some finite molecules and helical polymers
and subsequently we apply the method for obtaining a complete, parameter-free optimization
of the structural degrees of freedom of undimerized and dimerizedtrans-polyacetylene. This
study also gives the energy gain upon dimerization. Finally, we conclude in section 6.
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2. The first-principles method

We make use of the Born–Oppenheimer approximation and apply the density-functional
formalism of Hohenberg and Kohn [14]. The resulting Kohn–Sham single-particle equ-
ations [15]

Ĥeffψi(Er) ≡
[−∇2 + VNc(Er) + VC(Er) + Vxc(Er)

]
ψi(Er) = εiψi(Er) (1)

are solved by expanding the eigenfunctionsψi in a basis of linearized muffin-tin orbitals
(LMTOs). In equation (1) we have used Rydberg atomic units,VNc is the Coulomb potential
of the nuclei and of the (frozen-) core electrons,VC is that of the valence electrons, andVxc

is the exchange–correlation potential. For the latter we shall in our calculations use the local
approximation of von Barth and Hedin [16], but it will be stressed that for our general discussion
we may use any (local or non-local) form.

Inside any of the atom-centred, non-overlapping (muffin-tin) spheres (atER′) an LMTO
(centred atER and having the angular dependence defined byL ≡ (l, m)) is described as linear
combinations∑

ER′,L′
SL,L′(κ, ER − ER′)[φ ER′,L′,κ (Er − ER′) + ω ER, ER′,L′(κ)φ̇ ER′,L′,κ (Er − ER′)] (2)

and outside all spheres analytically as

c ER,L(κ)KL(κ, Er − ER) (3)

with

KL(κ, Er − ER) ≡ iκl+1

(2l − 1)!!
h
(1)
l (κ|Er − ER|)YL(r̂ − R) ≡ Kl(κ, |Er − ER|)YL(r̂ − R). (4)

Here,|κ| is the decay constant of the Hankel functionsh(1)l andκ is purely imaginary. The
numerical functionsφ of equation (2) are obtained by replacing the full potential in equation (1)
by its spherically symmetric component and the eigenvalueεi by the (chosen) energyεν .
φ̇ ≡ ∂φ/∂εν and the constantsS, ω, andc are determined such that the function is continuous
and differentiable everywhere in space. ForER = ER′, we haveSL,L′ = δL,L′ .

Not too far from the nuclei the potential is close to spherical symmetry, such that the
functionsφ ER,L,κ in that region (where a large part of the total energy originates) represent
accurate approximations to the exact solutions to the Kohn–Sham equations.

By applying the variational principle the eigenfunctions of equation (1) are accordingly
approximated by a linear combination of the LMTOs,χ , i.e.

ψi(Er) ' ψ̃i(Er) =
∑
ER,L,κ

uiER,L,κχ ER,L(κ, Er − ER). (5)

Only for a complete basis set isψi = ψ̃i .
The potential depends on the solutions to equation (1) that in turn depend on the potential;

i.e. an iterative process is necessary. We shall here assume that self-consistency has been
reached.

Inside the muffin-tin spheres we decompose the total electron density into one component
from the valence electrons and one from the core electrons,

ρ(Er) = ρv(Er) + ρc(Er) (6)

with ρc being the core electron density. Within the frozen-core approximationρc is assumed
to be a sum of spherically symmetric core densities of the free atoms that are each confined to
the corresponding muffin-tin sphere.
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Inside the spheres we expand the valence-electron density as

ρv(Er) =
∑
L

ρv,L(|Er − ER|)YL(r̂ − R) (7)

where theL-summation can in principle be carried through to any desired accuracy. Thereby
similar expressions for the Coulomb potential and the exchange–correlation potential can then
be found for inside the spheres.

In the interstitial region neither the exchange–correlation potential nor the Coulomb
potential can be calculated directly from the density. This is not the case when the method is
based on a plane-wave basis set in the interstitial region. Here, however, we approximate the
electron density in the interstitial region,

ρv(Er) ' ρ̃v(Er) =
∑
λ

∑
L

∑
ER
r ER,L,λKL(λ, Er − ER) (8)

where the coefficientsr ER,L,λ are determined from a least-squares fit. The Coulomb potential
in the interstitial region is then expressed in a closely related form

VC(Er) =
∑
λ

∑
L

∑
ER
vC; ER,L,λKL(λ, Er − ER) (9)

with the difference that the sum in equation (9) includesλ = 0, whereas that in equation (8)
does not.

The exchange–correlation potentialVxc and the corresponding energy densityεxc are in
the interstitial region approximated in an equivalent way:

Vxc(Er) ' Ṽxc(Er) =
∑
λ

∑
L

∑
ER
vxc; ER,L,λKL(λ, Er − ER)

εxc(Er) ' ε̃xc(Er) =
∑
λ

∑
L

∑
ER
εxc; ER,L,λKL(λ, Er − ER)

(10)

excluding, however,λ = 0.
It will be important to specify the fits. The electron-density fit is performed by minimizing∫ ∫

i.r.
[ρv(Er1)− ρ̃v(Er1)][ρv(Er2)− ρ̃v(Er2)]f (Er1, Er2) dEr1 dEr2 (11)

including the ‘electron-conservation’ constraint∫
i.r.
ρv(Er) dEr =

∫
i.r.
ρ̃v(Er) dEr. (12)

Here, ‘i.r.’ denotes integrals over the interstitial region, and

f (Er1, Er2) =


δ(Er1− Er2)
or

1

|Er1− Er2| .
(13)

The first choice corresponds to minimizing the error in the electron density and the second to
minimizing that of the Coulombic electron–electron interaction energy.

The exchange–correlation fits are performed equivalently by minimizing the square of the
error but with the integral replaced by a sum over a larger number of selected points in the
interstitial region and without any constraint. Moreover we useρ̃v(Er) of equation (8) instead
of ρv(Er). Accordingly, we minimize∑

i

{
Ṽxc(Eri)− Vxc[ρ̃v(Eri)]

}2
(14)
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with i running over the finite number of points in the interstitial region.
At self-consistency we may finally write the total valence energy as [13]

Eval =
occ∑
i=1

〈ψ̃i |−∇2|ψ̃i〉 +
∫

MTS
ρv(Er)

{
1

2
VC(Er) + VNc(Er) + εxc[ρ(Er)]

}
dEr

+
∫

MTS
ρc(Er) {εxc[ρ(Er)] − εxc[ρc(Er)]} dEr

+
∫

i.r.
ρv(Er)

[
VC(Er) + VNc(Er) +

4

3
ε̃xc(Er)

]
dEr

+
∫

i.r.
ρ̃v(Er)

[
−1

2
VC(Er)− 1

3
ε̃xc(Er)

]
dEr +

∑
i 6=j

ZciZcj

| ERi − ERj |
. (15)

‘MTS’ denotes integrals over the muffin-tin spheres. Moreover,Zci is the effective charge
(i.e., nuclear minus core) of theith nucleus, andERi its position. The valence energy excludes
terms of the total energy that are constants (i.e., independent of the structure and deposition)
within the frozen-core approximation.

This expression is general for most density-functional methods. Whenever fitting strat-
egies are used, first-order errors in the difference between exact and approximate quantities
are largely removed when using the ‘i.r.’ expressions in those parts of space where the fits are
employed. In the remaining parts, where no fits are used, the ‘MTS’ terms should be used. In
many density-functional methods one uses only one strategy, but whenever both strategies are
used in different parts of space (most notably in the augmented-wave and multiple-scattering
methods) it is important to be aware of the fact that there may be (small) discontinuities on
the boundaries between the two parts. Furthermore, the number of electrons in the fit regions
may not be constant. The existence of the boundaries leads to a number of extra terms when
calculating derivatives ofEval.

3. Forces

3.1. Surface terms

The forces are obtained by differentiating the total valence energy of equation (15) with respect
to a nuclear coordinateRα, with α = x, y, or z. This means that we shall indirectly assume
that one of the nuclei (atERk) is displaced infinitesimally. This displacement will lead to an
infinitesimal change in all quantities entering equation (15), but will moreover also result in
a shift of the muffin-tin sphere centred atERk. Therefore, any derivative of an integral with
respect toRα contains both a term from the derivative of the integrand as well as a surface
term from the sphere atERk.

We shall use the fact that the surface is that of a sphere, such that anα-projection of a
normal to the surface pointing away from the integration region can be written as

±nα = ±
√

4π

3
Ypα (r̂ − Rk) (16)

where the sign depends on whether the integration region is the sphere (+) or the interstitial
region (−).

Therefore, assuming that the integrand of interest is

f ({ ERi}, Er) =
{
f1( ERl, Er) inside the sphere atERl
f2(Er) in the interstitial region

(17)



7248 M Springborg and A Pohl

we have
∂

∂Rα

∫
f ({ ERi}, Er) dEr =

∫
|Er− ERk |=sk

s2
k

[
f1( ERk, Er)− f2(Er)

]√4π

3
Ypα (r̂ − Rk) d(r̂ − Rk)

+
∫

∂

∂Rα
f ({ ERi}, Er) dEr (18)

with sk being the radius of the muffin-tin sphere atERk.

3.2. Hellmann–Feynman forces

The Hellmann–Feynman force is the exact force when no approximation is made in solving
the Kohn–Sham equations (i.e., whenψi andψ̃i of equation (5) are identical, no fits in the
interstitial region have been made, all expansions are carried through to convergence, and the
core electrons are not kept frozen). It is the partial derivative of the total energy with respect to
the nuclear coordinate. The total energy (which also contains terms from the core electrons)
may be obtained from equation (15) by settingρc = 0 and replacingρv by ρ = ρv + ρc.
When the fits in the interstitial region are exact, the total energy contains only two terms that
explicitly depend on the nuclear coordinates, i.e., the potential generated by the nuclei and the
nuclear–nuclear repulsion. Therefore, the Hellmann–Feynman force is

−FHF
Rα
= ∂Etot

∂Rα
= ∂

∂Rα

{
−
∑
i

∫
2Zi
|Er − ERi |

ρ(Er) dEr +
∑
i 6=j

ZiZj

| ERi − ERj |

}
. (19)

The second term on the right-hand side is easily evaluated as

2Zk
∑
i 6=k

Zi

| ERi − ERk|2
√

4π

3
Ypα (R̂i − Rk). (20)

For the first term on the right-hand side of equation (20) one may use two different expressions,
as pointed out by Harriset al [1]:∫

∂

∂Rα

∑
i

−2Zi

|Er − ERi |
ρ(Er) dEr = −Zk ∂

∂Rα

[
VC(Er)|Er= ERk

]
= − 2Zk

∫
ρ(Er)
|Er − ERk|2

√
4π

3
Ypα (r̂ − Rk) dEr. (21)

Note that we here have interchanged integration and differentiation compared with equ-
ation (19) and thereby neglected surface terms.

The first expression in equation (21) involves the derivative of the potential at the site of
the nucleus and is thus very sensitive to an accurate description here. The second expression
may be numerically and computationally more stable since it is a one-dimensional integral of
thepα-projected electron density over the whole space. We have implemented both methods
and found that for the present method they yield identical results, and we shall therefore use the
first expression that is the simplest one. In both cases we have, however, used the approximate
electron density in the interstitial region in defining the Coulomb potential. The correction
term for this error will be discussed in subsection 3.5.

Independently of which expression in equation (21) is used, we also have to include a
surface term, i.e.
∂

∂Rα

∑
i

∫ −Zi
|Er − ERi |

ρ(Er) dEr =
∫

∂

∂Rα

−Zk
|Er − ERk|

ρ(Er) dEr

+
∫
|Er− ERk |=sk

s2
k

√
4π

3
Ypα (r̂ − Rk)

−2Zk

|Er − ERk|
[
ρ−(Er)− ρ+(Er)] d(r̂ − Rk) (22)
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whereρ− (ρ+) is the exact electron density just inside (outside) the muffin-tin sphere. Since,
however, the basis functions are continuous everywhere,ρ− = ρ+, and the surface term
vanishes.

3.3. Pulay forces

In order to calculate the forces such that they become the gradients to the calculated total-
energy surface we need explicitly to take three effects into account that are neglected when
considering only the Hellmann–Feynman forces. These effects arise from the fact that the
wavefunctionsψ̃i (cf. equation (5)) are not the exact solutions to the Kohn–Sham equations,
from the frozen-core approximation, and from the fits of the potentials and densities in the
interstitial region. The first effect leads to the so-called Pulay forces [17], whereas the second
has been treated by Harriset al [1]. For the last effect we shall closely follow a procedure
of Fournieret al [18], but with some important modifications, as well as one due to Dunlap
et al [19]. Both for the Pulay forces and for the fit corrections, our separation of space into
muffin-tin spheres and the interstitial region leads to extra complications.

Considering first the Pulay forces and neglecting for the moment their surface terms it is
relatively straightforward (see, e.g., [20]) to obtain

−F Pulay
Rα
=

occ∑
i=1

∑
ER1, ER2

∑
L1,L2

∑
κ1,κ2

(uiER1,L1,κ1
)∗uiER2,L2,κ2

×
∫ [dχ∗ER1,L1,κ1

(Er − ER1)

dRα
(Ĥeff − εi) χ ER2,L2,κ2

(Er − ER2)

+ χ∗ER1,L1,κ1
(Er − ER1)(Ĥeff − εi)

dχ ER2,L2,κ2
(Er − ER2)

dRα

]
dEr. (23)

For the basis functionsχ we insert the LMTOs of section 2. The integrals split them
up into two terms, one over the muffin-tin spheres and one over the interstitial region. By
considering each part of the space separately we have to take into account thatĤeff then is no
longer Hermitian. Since

Ĥeff = −∇2 + V (Er) (24)

only−∇2 leads to non-Hermiticity (this is due to the separation of space into the spheres and
the interstitial region so that the wavefunctions do not vanish on some of the borders of the
integration regions, i.e., on the sphere boundaries). For−∇2 we use Green’s theorem,

−
∫
4

f (Er)∇2g(Er) dEr = −
∫
4

g(Er)∇2f (Er) dEr −
∫
δ4

[f (Er) E∇g(Er)− g(Er) E∇f (Er)] · En dEr.
(25)

Here,4 is the volume of integration (either the muffin-tin spheres or the interstitial region)
andδ4 its boundary. Moreover,En is a normal toδ4 pointing away from4 (cf. equation (16)).
Identifyingf = χ∗ER1,L1,κ1

and

g = d

dRα
χ ER2,L2,κ2

in equation (23) we can evaluate the complete expression in equation (23). As above, the
continuity and differentiability of the basis functions make the surface term in equation (25)
vanish.
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A further surface term for the Pulay forces that was neglected in equation (23) can be
written as
occ∑
i=1

[∫
ψ̃∗i (Er)∇2ψ̃i(Er) d(r̂ − Rk)

∣∣∣∣∣
|Er− ERk |=s+

k

−
∫
ψ̃∗i (Er)∇2ψ̃i(Er) d(r̂ − Rk)

∣∣∣∣∣
|Er− ERk |=s−k

]

+
∫
|Er− ERk |=sk

s2
k

√
4π

3
Ypα (r̂ − Rk)

[
V (Er)ρ(Er)− Ṽ (Er)ρ(Er)] d(r̂ − Rk) (26)

where the first part is due to the kinetic energy operator and the second part to the potential.
This term does not vanish.

3.4. The frozen-core approximation

Harriset al [1] have shown that when applying a frozen-core approximation it is not sufficient
to correct the Hellmann–Feynman force simply by replacing the total density by the valence
density, but an extra term turns up due to the implicitly assumed rigid shift of both nucleus
and corresponding core. This term is (including surface terms)

F core
Rα
=
∫
ρ ′c(|Er − ERk|)

√
4π

3
Ypα (r̂ − Rk)

[
VC(Er) + Vxc(Er)

]
dEr

−
∫
|Er− ERk |=sk

s2
k ρc(sk)

√
4π

3
Ypα (r̂ − Rk)

[
VC(Er) + εxc(Er)

]
d(r̂ − Rk) (27)

where we have assumed that the core density is spherically symmetric. In our calculations
we renormalize the core density by including an additional (small) constant density such that
it is confined to the corresponding muffin-tin sphere. Therefore, the integral in equation (27)
is only over the corresponding sphere and is easily evaluated using thep-components of the
angular expansions of the potentialsVC andVxc.

Despite the frozen-core approximation, the nuclear charge in equation (21) has to remain
the true one, andnot the effective one, whereas those in equation (20) are to be replaced by
the effective ones.

3.5. Corrections due to the charge-density fit

The third set of correction terms mentioned in section 3.3 is due to the approximate description
of densities and potentials in the interstitial region. We shall first discuss corrections due to
the fit of the Coulomb potential and follow closely an approach of Fournieret al [18]. There
will, however, be some important modifications, which is the reason for the more detailed
description here.

Fournieret al use the fit of equation (11) withf (Er1, Er2) = |Er1 − Er2|−1, as suggested by
Dunlapet al [21]. In addition, they have no separation of space into muffin-tin spheres and
interstitial region, so all integrals are over the whole space.

Due to the fit of the interstitial charge density, we need to include two more terms in the
calculation of the forces. The first one is∑

ERLλ

δEval

δr ER,L,λ

dr ER,L,λ
dRα

. (28)

Using equation (15) and neglecting the fact that the exchange–correlation energy also has a
dependence onr ER,L,λ, it is straightforward to rewrite this as∑

ERλL

dr ER,L,λ
dRα

∫ ∫
2[ρv(Er1)− ρ̃v(Er1)]KL(λ, Er2 − ER)

|Er1− Er2| dEr1 dEr2. (29)
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This term vanishes as a consequence of equation (34)if we usef (Er1, Er2) = |Er1−Er2|−1 andif the
area of integration is the whole space. However, when the fit is performed only in parts of space
where the number of electrons may not be constant, and/or when usingf (Er1, Er2) = δ(Er1−Er2),
this is not the case. Instead the coefficientsr ′ER,λ,L ≡ dr ER,L,λ/dRα have to be obtained as
follows.

Equation (11) together with the constraint of equation (12) can be written as
∂

∂r ER,L,λ

{∫ ∫
[ρv(Er1)− ρ̃v(Er1)]f (Er1, Er2)[ρv(Er2)− ρ̃v(Er2)] dEr1 dEr2 − γ

∫
ρ̃v(Er) dEr

}
= 0.

(30)

γ is a Lagrange multiplier, and the region of integration is the interstitial region in our approach
but the whole space in the approach of Fournieret al.

By introducing

A ER′λ′L′, ERλL = 2
∫ ∫

KL′(λ
′, Er1− ER′)f (Er1, Er2)KL(λ, Er2 − ER) dEr1 dEr2

B ERλL =
∫
KL(λ, Er − ER) dEr

D ERλL = 2
∫ ∫

ρv(Er1)f (Er1, Er2)KL(λ, Er2 − ER) dEr1 dEr2

(31)

we have in matrix form
∂

∂r ER,L,λ

(
Ar + γB

) = ∂

∂r ER,L,λ
D. (32)

Due to the constraint, equation (13), we have in addition

r†B = B†r = Ne (33)

withNe being the number of electrons in the region of integration. Representing the derivatives
with primes, this leads to

Ar ′ + γ ′B = D′ − A′r − γB ′ (34)

and

(r ′)†B = N ′e − r†B ′. (35)

These equations have the same forms as equations (32) and (33) and, accordingly, they can
be solved in an equivalent way, once the right-hand sides are known. These can, in turn, be
calculated from the definitions in equation (31) with proper inclusion of surface terms.

The other term that will be included in the calculation of the forces is related to the
functional derivative of the valence energy with respect to the fit functionsKL(λ, Er − ER) of
the electron density. We shall focus on the two terms∫

MTS
ρv(Er)1

2
VC(Er) dEr +

∫
i.r.

[
ρv(Er)VC(Er)− 1

2
ρ̃v(Er)VC(Er)

]
dEr (36)

and accordingly neglect the fact that the exchange–correlation terms also contain some
dependences on the fit functions of the electron density (cf. equation (14)).

Then,∫ ∑
ERλL

δEval

δKL(λ, Er − ER)
∂KL(λ, Er − ER)

∂Rα
dEr

= 2
∑
λL

r ERk,L,λ

∫ ∫
i.r.

∂KL(λ, Er1− ERk)
∂Rα

[ρv(Er2)− ρ̃v(Er2)] 1

|Er1− Er2| dEr1 dEr2.

(37)
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The right-hand side can be interpreted as the Coulomb energy for the interaction between
the charge densitiesρv − ρ̃v and

∑
r dK/dRα. We may thus, alternatively, write this term as

an integral over the product of the charge densityρv − ρ̃v and a potential, where the potential
is the Coulomb potential of the charge density

∑
r dK/dRα. The latter can be written as a

closed form (i.e., by using the properties of the fitting functions).
It turns out that the surface term corresponding to equation (37) vanishes. In showing this

we use

2
∫

MTS

ρv(Er1)
|Er − Er1| dEr1 + 2

∫
i.r.

ρ̃v(Er1)
|Er − Er1| dEr1 = VC(Er). (38)

Differentiating this with respect toRα gives
dVC

dRα
= 2

∫
MTS

dρv(Er1)
dRα

1

|Er − Er1| dEr1 + 2
∫

i.r.

dρ̃v(Er1)
dRα

1

|Er − Er1| dEr1

+ 2
∫
|Er1− ERk |=sk

s2
k

ρ−v (Er1)− ρ̃v(Er1)
|Er − Er1|

√
4π

3
Ypα (r̂ − Rk) d( ̂r1− Rk). (39)

Differentiating now equation (36) and using equation (39) results in the following surface
terms:∫

MTS
ρv(Er)

∫
|Er1− ERk |=sk

s2
k

ρ−v (Er1)− ρ̃v(Er1)
|Er − Er1|

√
4π

3
Ypα (r̂ − Rk) d( ̂r1− Rk) dEr

+
∫

i.r.
[2ρv(Er)− ρ̃v(Er)]

×
∫
|Er1− ERk |=sk

s2
k

ρ−v (Er1)− ρ̃v(Er1)
|Er − Er1|

√
4π

3
Ypα (r̂ − Rk) d( ̂r1− Rk) dEr

+
∫
|Er− ERk |=sk

s2
k [−2ρ+

v (Er) + ρ−v (Er) + ρ̃v(Er)]

× 1

2
VC(Er)

√
4π

3
Ypα (r̂ − Rk) d(r̂ − Rk). (40)

Neglecting second-order terms inρv − ρ̃v gives∫
|Er− ERk |=sk

s2
k

[
ρ−v (Er)− ρ+

v (Er)
]
VC(Er)

√
4π

3
Ypα (r̂ − Rk) d(r̂ − Rk) (41)

which vanishes since the basis functions are continuous on the sphere boundaries.

3.6. Corrections due to the exchange–correlation fits

Dunlapet al [19] have discussed a correction term due to the fits of the exchange–correlation
functionsεxc andVxc. Since their discussion is directly applicable here we shall only give the
final formulae for this correction term with, however, the modification that we have to include
extra surface terms.

The least-squares fit of equation (10) corresponds to solving the equations∑
ER2L2λ2

vxc; ER2,L2,λ2

∑
i

KL1(λ1, Eri − ER1)KL2(λ2, Eri − ER2) =
∑
i

KL1(λ1, Eri − ER1)Vxc(Eri) (42)

for all ER1, L1, λ1. i labels the points used in the fit. According to Dunlapet al we define the
quantitiest ER2,L2,λ2

(replacingvxc; ER2,L2,λ2
) as the solutions to equation (42) obtained by replacing

the right-hand sides by∫
i.r.
ρv(Er)KL1(λ1, Er − ER1) dEr



Forces, muffin-tin orbitals, and helical polymers 7253

(for the sake of completeness we add that usingρ̃v(Er) instead ofρv(Er) leads to only negligible
changes in the final results). Subsequently, we introduce

T (Er) =
∑
ERLλ
t ER,L,λKL(λ, Er − ER). (43)

The correction term has then the following form:

∑
λL

exc; ERk,λ,L

∫
i.r.
ρ̃v(Er)∂KL(λ, Er −

ERk)
∂Rα

dEr

+
∑
ERλL
(exc; ER,L,λ − vxc; ER,L,λ)

∫
i.r.
KL(λ, Er − ER)∂ρ̃v(Er)

∂Rα
dEr

+
∑
λL

t ERk,L,λ
∑
i

[
εxc(Eri)− ε̃xc(Eri)

]∂KL(λ, Eri − ERk)
∂Rα

−
∑
i

T (Eri) εxc(Eri)− Vxc(Eri)
ρ̃v(Eri)

∂ρ̃v(Eri)
∂Rα

−
∑
λL

exc; ERk,L,λ
∑
i

T (Eri) ∂KL(λ, Eri −
ERk)

∂Rα

−
∫
|Er− ERk |=sk

s2
k

√
4π

3
Ypα (r̂ − Rk)

×
[
ρv(Er)εxc(Er)− ρv(Er)4

3
ε̃xc(Er) + ρ̃v(Er)1

3
ε̃xc(Er)

]
d(r̂ − Rk). (44)

We have here used̃ρv instead ofρv since we determinẽεxc andṼxc from ρ̃v. Moreover, the
last term is a surface term which is absent in the original expression of Dunlapet al [19].

4. Helical polymers

For infinite, periodic systems we may use the formulae of the preceding section in obtaining
the forces related to equivalent displacements of all equivalent atoms simultaneously. The only
modifications will be that the orbital summation has to be extended with aEk-space integration
and that the wavefunctions and basis functions are Bloch waves, i.e., sums over equivalent
atom-centred basis functions of different unit cells multiplied with Bloch phase factors. The
forces are, however, not able to give information on the variations of the total energy as a
function of the size of the unit cell.

A special case is the helical polymers for which our full-potential LMTO method has been
explicitly developed [12]. These systems are assumed to be infinite, helical, isolated, periodic
chains with straight helical axes. The interactions between different chains are supposed to be
negligible so that only one chain needs to be considered.

The helical symmetry is utilized by defining all quantities (basis functions, fit functions,
potentials, etc) in local atom-centred right-handed coordinate systems that each have thez-axis
parallel to the helical axis and thex-axis pointing away from this. Moreover, the size of the
unit cell is described by the two parametersh andv, that describe the primitive symmetry
operation (i.e., a translation ofh and a rotation ofv).
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5. Applications to molecules and helical polymers

We have implemented the ideas presented in sections 3 and 4 in the full-potential LMTO method
for helical polymers and tested the results for some simple systems. The general findings of
these test calculations will now be discussed. Subsequently, we shall apply the method in
optimizing all structural degrees of freedom oftrans-polyacetylene as well as calculating the
energy gain due to the dimerization.

However, we first give a few technical details. The basis sets consist of two sets of
functions each containing s, p, and d functions on all sites. The two sets differ only in the
value ofκ.

In calculating the Pulay forces we notice that this leads to matrix elements for functions
of s, p, d, and f symmetry. The f functions are only included explicitly inside the spheres,
whereas it is assumed that these functions are so localized that their effects in the interstitial
region can be neglected. For atoms at the beginning of the 3d and 4d series this may be a
problem. Exchange and correlation effects were included using the local approximation of
von Barth and Hedin [16].

All our test calculations showed one general result: in deriving the formulae for the
forces we have started with the Hellmann–Feynman forces and those due to the frozen-core
approximation and assumed that all other contributions are due to small inaccuracies in solving
the Kohn–Sham equations. In agreement with this, the test calculations showed that only when
the calculation is done ‘well’ (i.e., when the approximate wavefunctionsψ̃i are close to the
exact onesψi , and the fits are accurate) are the calculated forces actually the derivatives of the
total-energy surface and, consequently, only then does the structure of vanishing forces equal
that of the lowest total energy.

In order to illustrate the importance of the various contributions to the forces we show
in figure 1 those for the N2 molecule. The Hellmann–Feynman forces and the frozen-core
corrections are in principle exact under the assumption that no other approximation is made in
the calculation. On the other hand, the Pulay forces and those due to the fits are corrections
and as such calculated under the assumption that they are only small. Nevertheless, as figure 1
shows, these corrections are certainly not vanishing and without them the forces would vanish

Figure 1. Various contributions to the forces on a single atom of a N2 molecule as functions
of the bond length. The solid curve is the sum of the Hellmann–Feynman and the frozen-core
contributions, the dashed curve the Pulay forces, the dashed–dotted curve the corrections due to
the charge-density fits, and the dotted curve those due to the exchange–correlation fits. The last
curve is the total force. Finally, the vertical line marks the position of the total-energy minimum.
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for a bond length very different from that of the lowest total energy.
We have, in addition to the N2 molecule, tested the quality of the present approach on

a number of smaller molecules as well as on some helical polymers. Here, we shall only
report results on one system,trans-polyacetylene. This polymer contains a zigzag backbone
of carbon atoms that are bonded via sp2 hybrids, formingσ -bonds andπ -bonds. In addition,
there is one hydrogen atom per carbon atom; cf. figure 2. The lowest total energy is found for
a structure where the C–C bond lengths alternate, but the structure without this alternation has
a total energy only slightly above that of the former. It is a critical test to be able to describe
this bond-length alternation as well as the energy gain related to this. We have optimized all
structural degrees of freedom for this using the forces and thereby obtained C–C bond lengths
of 2.520 and 2.636 au, C–C–C bond angles of 123.6◦, C–H bond lengths of 2.065 au, and,
finally, C–C–H and C=C–C bond angles of 119.7◦ and 116.7◦, respectively. Assuming that
the C–C bond lengths are constant, but keeping the unit-cell length unchanged leads to C–C
bond lengths of 2.576 au, C–C–C bond angles of 123.7◦, C–H bond lengths of 2.064 au, and
C–C–H bond angles of 118.2◦. In addition, the total energy is increased by 0.037 eV per CH
unit compared with that of the structure with alternating C–C bond lengths.

Figure 2. The structure of trans-poly-
acetylene with (a) alternating and (b) non-
alternating C–C bond lengths. Black and white
circles represent carbon and hydrogen atoms,
respectively.

Only recently there have been other reports of full structure optimizations for this polymer
[22–27]. These give C–C single-bond lengths between 2.67 and 2.76 au, C–C double-bond
lengths between 2.46 and 2.60 au, C–H bond lengths from 2.06 to 2.08 au, C–C–C bond
angles of 124–125◦, and C–C–H bond angles of 117–119◦. Experimentally, the C–C bond
lengths are 2.57 and 2.72 au, the C–H bond lengths are 2.05–2.10 au, and the C–C–C bond
angles 123◦ [28, 29] which agrees well with our values as well as with those from the other
theoretical approaches. Finally, with the other theoretical approaches, the energy gain upon
the bond-length alternation has been estimated to be between 0.019 and 0.067 eV per CH unit,
also in excellent agreement with our value.

The existence of the bond-length alternation is often ascribed to a Peierls distortion that
leads to a gap at the Fermi level, which is confirmed by the band structures for the optimized
structures shown in figure 3. These band structures are very similar to those obtained earlier
with the present computational method but for a slightly different geometry [13] and which
were shown to agree well with experimental information. Therefore, the band structures of
figure 3 will not be discussed further here.

In total we see that our results agree well with those of other theoretical studies. Therefore,
we believe that this critical test shows that our calculation of the forces is correct.

6. Conclusions

In the present work we have derived closed formulae for the calculation of forces within
general density-functional methods, where we also considered methods that treat different
parts of space differently. We discussed in particular a full-potential LMTO method. LMTO
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Figure 3. Band structures for (a) the optimized structure of
trans-polyacetylene and (b) the structure with non-alternating
C–C bond lengths but the same unit-cell length as in (a).

and related methods have the advantage that the basis functions are constructed so as to be
good approximations to the exact solutions to the Kohn–Sham equations. In order to achieve
this, space is divided into two parts, i.e. muffin-tin spheres and the interstitial region. This
separation makes the calculation of matrix elements more cumbersome since any integration
over the whole space has to be split into two terms, of which one is an integral over all spheres
and the other is an integral over a ‘Swiss cheese’. In deriving the formulae for the forces,
i.e. the changes in the total energy due to small shifts of the nuclei and their corresponding
spheres, this separation leads to extra complications including that of the occurrence of surface
terms, as we have seen.

Our general strategy has been to calculate forces that are consistent with the calculated
total-energy hypersurface partly independently of the accuracy with which the latter is obtained.
This meant correcting for various approximations in describing single-particle eigenfunctions,
electron densities, and potentials. Our test results demonstrated that we have achieved this
goal as long as one may consider the calculations ‘realistic’. In order to do so we relied on
earlier works for corrections due to not fully converged expansions, notably those of Pulay
[17], Fournieret al [18], and Dunlapet al [19], but modified in order to suit the present LMTO
approach.

Finally, we have applied the method in optimizing the structure oftrans-polyacetylene as
well as in calculating the energy gain upon bond-length alternation. By comparing with results
of experimental and other theoretical studies on this material, we were able to show that our
method is reliable.
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